¿Qué son las Técnicas de muestreo? Y sus 2 clasificaciones

CLASIFICACIÓN DE LAS TÉCNICAS DE MUESTREO

Las técnicas de muestreo pueden clasificarse en general como probabilístico y no probabilístico. El muestreo no probabilístico no se basa en el azar, sino en el juicio personal del investigador para seleccionar a los elementos de la muestra. El investigador puede decidir de manera arbitraria o consciente qué elementos incluirá en la muestra.

Las muestras no probabilísticas pueden dar buenas estimaciones de las características de la población; sin embargo, no permiten evaluar objetivamente la precisión de los resultados de la muestra. Como no hay forma de determinar la probabilidad de que cualquier elemento particular quede seleccionado para incluirse en la muestra, no es posible hacer una extrapolación estadística de las estimaciones obtenidas a la población.

tecnicas-de-muestreoLas técnicas de muestreo no probabilístico más comunes incluyen el muestreo por conveniencia, muestreo por juicio, muestreo por cuotas y muestreo de bola de nieve. 

En el muestreo probabilístico las unidades del muestreo se seleccionan al azar. Es posible especificar de antemano cada muestra potencial de un determinado tamaño que puede extraerse de la población, así como la probabilidad de seleccionar cada muestra.

No es necesario que cada muestra potencial tenga la misma probabilidad de quedar seleccionada; aunque es posible especificar la probabilidad de seleccionar cualquier muestra particular de un tamaño dado. Esto requiere no sólo una definición precisa de la población meta, sino también una especificación general del marco de muestreo.

Como los elementos del muestreo se seleccionan al azar, es posible determinar la precisión de las estimaciones de las características de interés de la muestra. Pueden calcularse los intervalos de confianza, los cuales contienen el verdadero valor de la población con un nivel dado de certeza.

Esto permite al investigador hacer inferencias o extrapolaciones acerca de la población meta de donde se extrajo la muestra. Las técnicas de muestreo probabilístico se clasifican con base en:

1.- Muestreo por elemento o por conglomerados.
2.- Probabilidad igual de la unidad o probabilidades desiguales.
3.- Selección no estratificada o estratificada.
4.- Selección aleatoria o sistemática.
5.- Técnicas de una sola etapa o de etapas múltiples.

MUESTREO NO PROBABILÍSTICO

Muestreo por conveniencia

El muestreo por conveniencia busca obtener una muestra de elementos convenientes. La selección de las unidades de muestreo se deja principalmente al entrevistador. Muchas veces los encuestados son seleccionados porque se encuentran en el lugar y momento adecuados. Los ejemplos de muestreo por conveniencia incluyen:entrevista-a-estudiantes

1. Uso de estudiantes, grupos de la iglesia y miembros de organizaciones sociales.

2. Entrevistas en centros comerciales sin calificar a los encuestados.

3. Uso de listas de cuentas de crédito de las tiendas departamentales.

4. Cuestionarios desprendibles incluidos en revistas 

5. Entrevistas con “gente en la calle”.

De todas las técnicas de muestreo, la más económica y la que menos tiempo consume es la del muestreo por conveniencia. Las unidades de muestreo son accesibles, sencillas de medir y cooperativas. A pesar de sus ventajas, esta forma de muestreo tiene serias limitaciones, una de las cuales es la presencia de muchas fuentes potenciales de sesgo de selección, como la autoselección del encuestado.

Las muestras por conveniencia no son representativas de ninguna población definible, por lo que a nivel teórico no tiene sentido generalizar a cualquier población, a partir de una muestra por conveniencia. Estas muestras tampoco son adecuadas para proyectos de investigación de mercados que impliquen inferencias sobre la población.

Las muestras por conveniencia no se recomiendan para la investigación descriptiva o causal, aunque pueden usarse en la investigación exploratoria para generar ideas, información o hipótesis. Las muestras por conveniencia son útiles
en los sesiones de grupo, pruebas piloto de cuestionarios o estudios piloto. Pero incluso en esos casos, hay que tener cautela al interpretar los resultados. Con todo, esta técnica se utiliza en ocasiones incluso en encuestas grandes.

Muestreo por juicio

El muestreo por juicio es una forma de muestreo por conveniencia, en el cual los elementos de la población se seleccionan con base en el juicio del investigador. El investigador utiliza su juicio o experiencia para elegir a los elementos que se incluirán en la muestra, porque considera que son representativos de la población de interés, o que de alguna otra manera son adecuados. Entre ejemplos comunes del muestreo por juicio se encuentran:

1. Mercados de prueba seleccionados para determinar el potencial de un nuevo producto.

2. Ingenieros de compras elegidos en una investigación de mercados industriales, porque se les considera representativos de la compañía.

3. Indicadores de distritos electorales seleccionados en la investigación de la conducta de emitir sufragios.

4. Testigos expertos usados en los tribunales.

5. Tiendas departamentales elegidas para probar un nuevo sistema de exhibición de mercancía.

El muestreo por juicio es económico, práctico y rápido; aunque no permite hacer generalizaciones directas a una población específica, porque por lo regular la población no se ha definido de manera explícita. El muestreo por juicio es subjetivo y su valor depende por completo del juicio, pericia y creatividad del investigador. Puede ser útil si no es necesario hacer inferencias sobre poblaciones muy grandes.

Muestreo por cuotas

El muestreo por cuotas puede considerarse como un muestreo por juicio restringido de dos etapas. La primera etapa consiste en desarrollar categorías de control, o cuotas, de los elementos de la población. Para desarrollar estas cuotas, el investigador lista las características de control relevantes y determina su distribución en la población meta.

Las características de control relevantes (que pueden incluir sexo, edad y, en algunos casos, raza) se identifican con base en el juicio. A menudo las cuotas se asignan de forma que la proporción de los elementos de la muestra que poseen las características de control sea igual a la proporción de los elementos de la población con dichas características.

En otras palabras, las cuotas aseguran que la composición de la muestra es igual a la composición de la población con respecto a las características de interés.

muestro-por-cuotasEn la segunda etapa, se seleccionan los elementos de la muestra con base en la conveniencia o el juicio. Una vez que se han asignado las cuotas, hay una libertad considerable para seleccionar los elementos que se incluirán en la muestra. El único requisito es que los elementos elegidos cumplan con las características de control. 

El muestreo por cuotas pretende obtener muestras representativas a un costo relativamente bajo. Sus ventajas son los bajos costos y la mayor conveniencia que representa para los entrevistadores poder seleccionar a los elementos de cada cuota.

De un tiempo a esta parte, se han impuesto controles más estrictos a los entrevistadores y los procedimientos de entrevista, con la finalidad de reducir el sesgo de selección; también se han sugerido lineamientos para mejorar la calidad de las muestras obtenidas por cuotas, en las entrevistas realizadas en centros comerciales. En ciertas condiciones, el muestreo por cuotas obtiene resultados parecidos a los del muestreo probabilístico convencional.

Muestreo de bola de nieve

En el muestreo de bola de nieve se selecciona un grupo inicial de encuestados, por lo general al azar, a quienes después de entrevistar se les solicita que identifiquen a otras personas que pertenezcan a la población meta de interés. Los encuestados subsecuentes se seleccionan con base en las referencias.

Este proceso puede realizarse en olas para obtener referencias de las referencias, lo cual origina un efecto de bola de nieve. Aunque se emplea el muestreo probabilístico para elegir a los primeros encuestados, la muestra final es no probabilística. Las referencias tendrán características demográficas y psicográficas más similares a las personas que las refieren de lo que ocurriría al azar.

Uno de los objetivos principales del muestreo de bola de nieve consiste en estimar las características que son raras en la población. Los ejemplos incluyen a usuarios de servicios gubernamentales o sociales específicos, como los vales de comida, cuyos nombres no deben revelarse; grupos especiales del censo, como hombres viudos menores de 35 años de edad; y miembros de una población minoritaria dispersa.

El muestreo de bola de nieve se emplea en la investigación industrial de comprador-vendedor, para identificar parejas de compradores-vendedores. La mayor ventaja del muestreo de bola de nieve es que incrementa en forma considerable la probabilidad de localizar las características deseadas en la población. También produce relativamente poca varianza del muestreo y costos bajos.

MUESTREO PROBABILÍSTICO

Las técnicas de muestreo probabilístico varían en términos de la eficiencia del muestreo, un concepto que refleja compensaciones entre los costos y la precisión del muestreo. La precisión (que se refiere al nivel de incertidumbre sobre las características que se medirán) está inversamente relacionada con los errores de muestreo; pero positivamente relacionada con el costo.

Cuanto mayor sea la precisión, más alto será el costo, y la mayoría de los estudios requieren una compensación. El investigador debe esforzarse por obtener el diseño de muestreo más eficiente en función del presupuesto asignado. La eficiencia de una técnica de muestreo probabilístico puede evaluarse comparándola con el muestreo aleatorio simple.

Muestreo aleatorio simple

En el muestreo aleatorio simple (MAS), cada elemento de la población tiene una probabilidad de selección igual y conocida. Además, cada posible muestra de un determinado tamaño (n) tiene una probabilidad igual y conocida de ser la muestra seleccionada realmente. Esto implica que cada elemento se selecciona de manera independiente de cualquier otro elemento.

muestreo-aleatorio-simpleLa muestra se extrae del marco de muestreo usando un procedimiento aleatorio. Este método es equivalente al sistema de lotería donde los nombres se colocan en un recipiente, el cual se agita y de él se sacan los nombres de los ganadores de una manera no sesgada. Para extraer una muestra aleatoria simple, el investigador primero recopila el marco de muestreo en el que a cada elemento se le asigna un número de identificación único.

Luego se generan números aleatorios para determinar qué elementos se incluirán en la muestra. Los números aleatorios pueden generarse mediante una rutina de cómputo o una tabla.

El MAS tiene muchas características convenientes, como el hecho de que es fácil de entender y que los resultados de la muestra pueden extrapolarse a la población meta. La mayoría de las técnicas de inferencia estadística suponen que los datos se recabaron usando un muestreo aleatorio simple.

Sin embargo, este método sufre de al menos cuatro desventajas importantes.

Primero, a menudo resulta difícil construir un marco de muestreo que permita extraer una muestra aleatoria simple.

Segundo, el MAS llega a generar muestras muy grandes o extendidas en amplias zonas geográficas, lo cual incrementaría el tiempo y el costo de la recolección de datos.

Tercero, el MAS a menudo produce menor precisión con mayores errores estándar que otras técnicas de muestreo probabilístico.

Cuarto, quizás el MAS no genere una muestra representativa.

Aunque en promedio las muestras obtenidas representarán bien a la población meta, una muestra aleatoria simple determinada quizá no lo haga, lo cual es más probable si es pequeño el tamaño de la muestra. Por estas razones, en la investigación de mercados no suele emplearse el MAS. Son más populares procedimientos como el muestreo sistemático.

Muestreo sistemático

Para obtener una muestra usando el muestreo sistemático, se selecciona un punto de inicio aleatorio y luego se elige de manera sucesiva cada i-ésimo elemento del marco de muestreo. Para determinar el intervalo de muestreo, i, se divide el tamaño de la población (N) entre el tamaño de la muestra (n) y se redondea al número entero más cercano.

Por ejemplo, suponga que la población consta de 100,000 elementos y se desea una muestra de 1,000. En este caso, el intervalo de muestreo (i) es 100. Se elige un número aleatorio entre 1 y 100. Si este número es, por ejemplo, 23, la muestra estará formada por los elementos 23, 123, 223, 323, 423, 523, etcétera.17

El muestreo sistemático es similar al muestreo aleatorio simple en el hecho de que cada elemento de la población tiene una probabilidad conocida e igual de ser seleccionado. No obstante, difiere del muestreo aleatorio simple en que sólo las muestras permisibles de tamaño n que pueden extraerse tienen una probabilidad igual y conocida de seleccionarse.

La probabilidad de que el resto de las muestras de tamaño n queden seleccionadas es cero. Para hacer un muestreo sistemático, el investigador supone que los elementos de la población están ordenados de alguna manera. En algunos casos, el orden (por ejemplo, la lista alfabética del directorio telefónico) no tiene relación con las características de interés; pero en otros casos, el ordenamiento está directamente relacionado con las características investigadas.

Por ejemplo, puede listarse a los clientes de tarjetas de crédito según el orden del saldo acreedor, u ordenarse a las empresas de un determinado sector de acuerdo con sus ventas anuales. Si el ordenamiento de los elementos de la población no tiene relación con las características de interés, el muestreo sistemático arrojará resultados muy similares al MAS.

El muestreo sistemático es menos costoso y más sencillo que el muestreo aleatorio simple, porque la selección aleatoria se hace sólo una vez. Además, los números aleatorios no tienen que concordar con los elementos individuales como en el MAS. Como algunas listas contienen millones de elementos, es posible ahorrar mucho tiempo y reducir así el costo del muestreo.

Si se dispone de información de la población que esté relacionada con las características de interés, puede usarse
el muestreo sistemático para obtener una muestra más representativa y confiable (menor error de muestreo) que el muestreo aleatorio simple. Otra ventaja relativa es que el muestreo sistemático puede usarse incluso sin conocer la composición (elementos) del marco de muestreo.

Por ejemplo, cuando se aborda a cada i-ésima persona que sale de una tienda departamental o un centro comercial. Por estas razones, es frecuente el uso del muestreo sistemático en encuestas a los consumidores por correo, telefónicas, en centros comerciales y por Internet.

Muestreo estratificado

El muestreo estratificado es un proceso de dos pasos en que la población se divide en subpoblaciones o estratos. Los estratos tienen que ser mutuamente excluyentes y colectivamente exhaustivos, por lo que cada elemento de la población debe asignarse a un único estrato sin omitir algún elemento de la población.

A continuación se seleccionan los elementos de cada estrato mediante un procedimiento aleatorio, por lo regular el muestreo aleatorio simple. Aunque en teoría sólo debe emplearse el muestreo aleatorio simple para seleccionar los elementos de cada estrato, en ocasiones se emplean el muestreo sistemático y otros procedimientos de muestreo probabilístico.

A diferencia del muestreo por cuotas, en el muestreo estratificado los elementos de la muestra se seleccionan de manera probabilística y no con base en la conveniencia o el juicio. Un objetivo importante del muestreo estratificado consiste en incrementar la precisión sin aumentar el costo.

Las variables utilizadas para dividir a la población en estratos se conocen como variables de estratificación. Los criterios para la selección de esas variables incluyen homogeneidad, heterogeneidad, relación y costo. Dentro de un estrato, es necesario que los elementos sean tan homogéneos como sea posible, mientras que los elementos de los diferentes estratos requieren ser tan heterogéneos como sea posible.

Las variables de estratificación deben tener una relación estrecha con las características de interés. Cuanto mejor se cumplan estos criterios, mayor será la eficacia en el control de la variación externa al muestreo. Por último, tiene que resultar sencillo medir y aplicar las variables, con la finalidad de reducir el costo del proceso de estratificación.

Las variables que suelen usarse para la estratificación incluyen características demográficas, tipo de cliente, tamaño de la empresa o tipo de industria. Es posible usar más de una variable para la estratificación, aunque por razones pragmáticas y de costo rara vez se utilizan más de dos.

El número de estratos a utilizar es cuestión de juicio, pero la experiencia sugiere que no se usen más de seis. Con más de seis estratos, cualquier ganancia en precisión se pierde por el mayor costo de la estratificación y el muestreo.

El muestreo estratificado puede asegurar que todas las subpoblaciones importantes estén representadas en la muestra. Esto es de particular importancia si hay un sesgo en la distribución de la característica de interés en la población. El muestreo estratificado combina la sencillez del muestreo aleatorio simple con las ganancias potenciales de precisión. De ahí que sea una técnica de muestreo popular.

Muestreo por conglomerados

En el muestreo por conglomerados, la población meta primero se divide en subpoblaciones o conglomerados mutuamente excluyentes y colectivamente exhaustivos. Luego se selecciona una muestra aleatoria de conglomerados con base en una técnica de muestreo probabilístico, como el muestreo aleatorio simple.

Para cada conglomerado seleccionado, se incluyen todos los elementos en la muestra, o se toma una muestra de elementos en forma probabilística. Si se incluye en la muestra a todos los elementos del conglomerado seleccionado, el procedimiento se denomina muestreo por conglomerados de una etapa.

Si de cada conglomerado seleccionado se extrae de manera probabilística una muestra de elementos, el procedimiento es un muestreo por conglomerados de dos etapas. 

muestreo-por-conglomeradosLa distinción fundamental entre el muestreo por conglomerados y el muestreo estratificado es que en el primero sólo se elige una muestra de subpoblaciones (conglomerados), mientras que en el muestreo estratificado se seleccionan todas las subpoblaciones (estratos) para un muestreo posterior. Ambos métodos también difieren en sus objetivos.

El objetivo del muestreo por conglomerados es incrementar la eficiencia del muestreo mediante la reducción de los costos. El objetivo del muestreo estratificado es incrementar la precisión. Con respecto a la homogeneidad y heterogeneidad, los criterios que se usan para formar los conglomerados son justo lo contrario a los que se usan para formar los estratos.

Los elementos dentro de un conglomerado deben ser tan heterogéneos como sea posible, aunque los conglomerados deben ser tan homogéneos como sea posible. De manera ideal, cada conglomerado debe ser una representación a pequeña escala de la población. En el muestreo por conglomerados, el marco de muestreo sólo se necesita para los conglomerados seleccionados para la muestra.

Una forma común de muestreo por conglomerados es el muestreo por área, en el cual los conglomerados están formados por áreas geográficas como condados, zonas habitacionales o manzanas.

Si sólo se realiza un nivel de muestreo en la selección de los elementos básicos (por ejemplo, el investigador muestrea manzanas y luego incluye en la muestra a todas las casas de la manzana), el diseño se conoce como muestreo por área de una etapa.

Si se realizan dos (o más) niveles de muestreo antes de seleccionar los elementos básicos (el investigador muestrea manzanas y luego muestrea las casas de las manzanas elegidas), el diseño se conoce como muestreo por área de dos etapas (o de etapas múltiples). La característica distintiva de la muestra por área de una etapa es que todas las casas de las manzanas (o áreas geográficas) seleccionadas se incluyen en la muestra. 

En el muestreo probabilístico proporcional al tamaño, los conglomerados se muestrean con una probabilidad proporcional al tamaño. El tamaño de un conglomerado se define en términos del número de unidades de muestreo que contiene. Por lo tanto, en la primera etapa los conglomerados grandes tienen mayor probabilidad de ser incluidos que los conglomerados pequeños.

En la segunda etapa, la probabilidad de seleccionar una unidad de muestreo de un conglomerado seleccionado varía inversamente con el tamaño del conglomerado. Por ende, la probabilidad de que cualquier unidad de muestreo específica se incluya en la muestra es igual para todas las unidades, porque las probabilidades desiguales de la primera etapa se equilibran con las probabilidades desiguales de la segunda etapa.

Las cantidades de las unidades de muestreo incluidas de los conglomerados seleccionados son aproximadamente iguales. El muestreo por conglomerados tiene dos grandes ventajas: viabilidad y bajo costo. En muchas situaciones, los únicos marcos de muestreo disponibles para la población meta son los conglomerados, no los elementos de la población.

Muchas veces, dados los recursos y las limitaciones no es factible recabar una lista de todos los consumidores en una población. Sin embargo, es posible obtener con relativa facilidad listas de áreas geográficas, centrales telefónicas y otros conglomerados de consumidores.

Si bien el muestreo por conglomerados es la técnica de muestreo probabilístico más económica, esta ventaja debe ponderarse contra varias limitaciones, como el hecho de produce muestras relativamente imprecisas y que es difícil formar conglomerados heterogéneos ya que, por ejemplo, las familias de una manzana tienden a ser similares más que diferentes. Además, sería difícil calcular e interpretar estadísticos basados en conglomerado

Libros consultados

Malhotra, N. K., Salinas, M. E. O., & Benassini, M. (2008). Investigación de mercados. Pearson Educación, pp. 340 – 352

Comparte con tus amigos
0 0 votes
Article Rating
Subscribe
Notify of
guest

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x
Scroll al inicio
Este sitio utiliza cookies debes aceptar para utilizar nuestro sitio web   
Privacidad
Abrir chat
Más información
Escanea el código
Hola
¿En qué podemos ayudarte?